Google has announced some cool text projects. See Google AI experiment has you talking to books. One of them, Talk to Books, lets you ask questions or type statements and get answers that are passages from books. This strikes me as a useful research tool as it allows you to see some (book) references that might be useful for defining an issue. The project is somewhat similar to the Veliza tool that we built into Voyant. Veliza is given a particular text and then uses an Eliza-like algorithm to answer you with passages from the text. Needless to say, Talking to Books is far more sophisticated and is not based simply on word searches. Veliza, on the other hand can be reprogrammed and you can specify the text to converse with.
They have a paper on this, Efficient Natural Language Response Suggestion for Smart Reply, with the following abstract:
This paper presents a computationally efficient machine-learned method for natural language response suggestion. Feed-forward neural networks using n-gram embedding features encode messages into vectors which are optimized to give message-response pairs a high dot-product value. An optimized search finds response suggestions. The method is evaluated in a large-scale commercial e-mail application, Inbox by Gmail. Compared to a sequence-to-sequence approach, the new system achieves the same quality at a small fraction of the computational requirements and latency.
They also have a set of games called Semantris where you type words and the game finds associations. The games train you to anticipate how the computer will associate words. One can imagine the games being used to train people to use tools that use the associations.
We will finally become intelligent in a way that legitimizes AI.